

SEA HUNTER and Maritime Autonomous Behaviors

Dr. Timothy Barton
Maritime Chief Engineer

Mr. Dan Brintzinghoffer, CAPT USN (ret) Maritime Business Development

Sponsored by:

Office of Naval Research Medium Displacement Unmanned Vehicle Program DARPA ACTUV Program

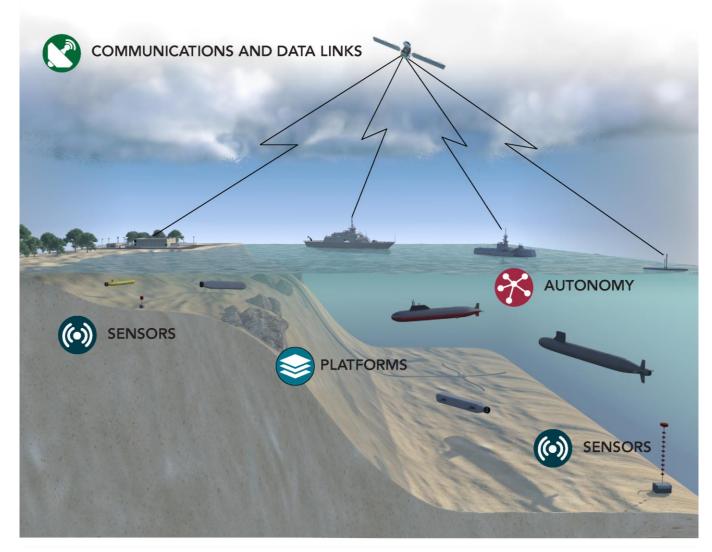
Leidos Maritime Capabilities and Enabling Technologies

Sensors

- Below water sensor modalities
- Above water sensor modalities
- Command and control

Autonomy

- Single platform and collaborative team autonomy
- Distributed hierarchical autonomy
- Open systems architecture
- COLREGS behaviors
- Mission behaviors


Processing

- Detection, classification, localization, and tracking
- Fusion
- Communications
- Automation

Physics and Phenomenology

- Propagation modalities
- Interference and noise
- Targets

Communications and Data Links

- Modalities: radio frequency, acoustic, and optical
- Features
- Waveforms
- Terminals
- Antennas
- Data exfiltration
- Command and control
- Command and control
- Mobile ad hoc networks
- Software defined radios
- Data reduction and compression
- Information assurance and anti-tamper
- Reliable protocols
- Disconnected, intermittent, and limited capability

Platforms

- Unmanned vessels
- Command and control
- Navigation
- Signature control

PHYSICS AND PHENOMENOLOGY

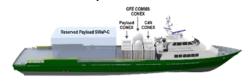
Maritime Autonomy and Unmanned Surface Vessels (USVs)

- Autonomy development in three areas:
 - Unmanned vessel autonomy
 - Optionally manned vessel autonomy
 - Autonomy for situational awareness

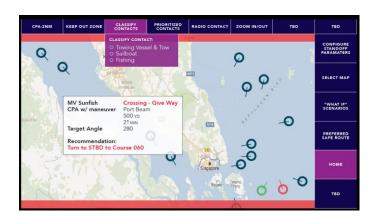
- Increasing mission capability and capacity at lower cost and risk
- Enable new missions

Get prototypes into the Fleet to demonstrate feasibility and value early – and to solicit feedback

Autonomous Vessels


"Autonomized" Manned Vessels

Leidos Research Vessel (R/V) **PATHFINDER**



Large Displacement Autonomous Commercial Ship

Bridge Decision Aids

Leidos LP-LG-4 Approval: 18-EXEMP-0402-1575

ONR MDUSV SEA HUNTER I Overview

- The DARPA ACTUV
 Program has transitioned to US Navy ONR as the MDUSV Program January 2018
 - SEA HUNTER I
- Under contract with ONR to build second hull SEA HUNTER II

Considerations:

- COLREGS in the context of a goal
- Tolerable level of risk to execute goals
- Payload integration

COLREGS = International Regulations for Preventing Collisions at Sea

MDUSV Program Goals:

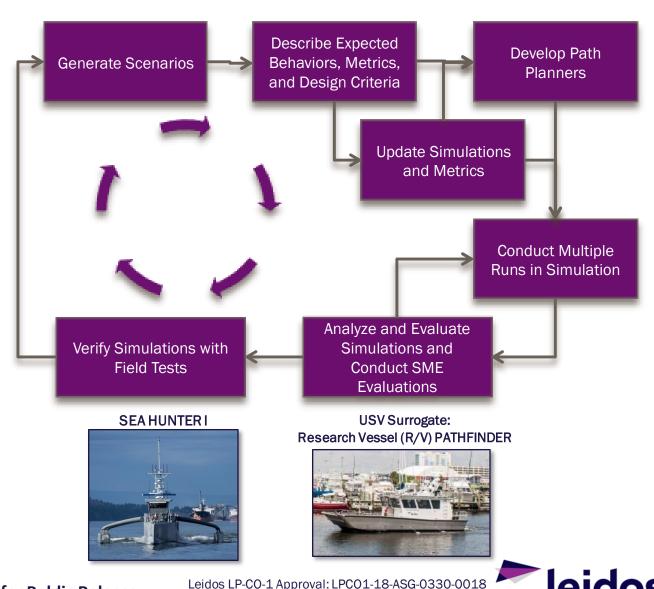
- Demonstrate a MDUSV capable of deployed bluewater operations, enabling a new class of naval system
- Demonstrate long-range and endurance autonomous operations of an MDUSV under sparse remote human supervisory control
- Establish operator trust in safe, reliable operation

ONR is Developing MDUSVs for the Navy:

- "SEA HUNTER" is a 132 foot medium displacement unmanned surface vehicle (MDUSV) prototype
- · Cost was \$23M for the first SEA HUNTER prototype
- A 2nd SEA HUNTER platform will be constructed design cycle to incorporate lessons learned from Sea Hunter I
- Supports additional at-sea testing and provides for further development and maturation of autonomy
- Advanced autonomy for highly reliable surface collision avoidance - advanced electro-optical / infrared (EO/IR) capability

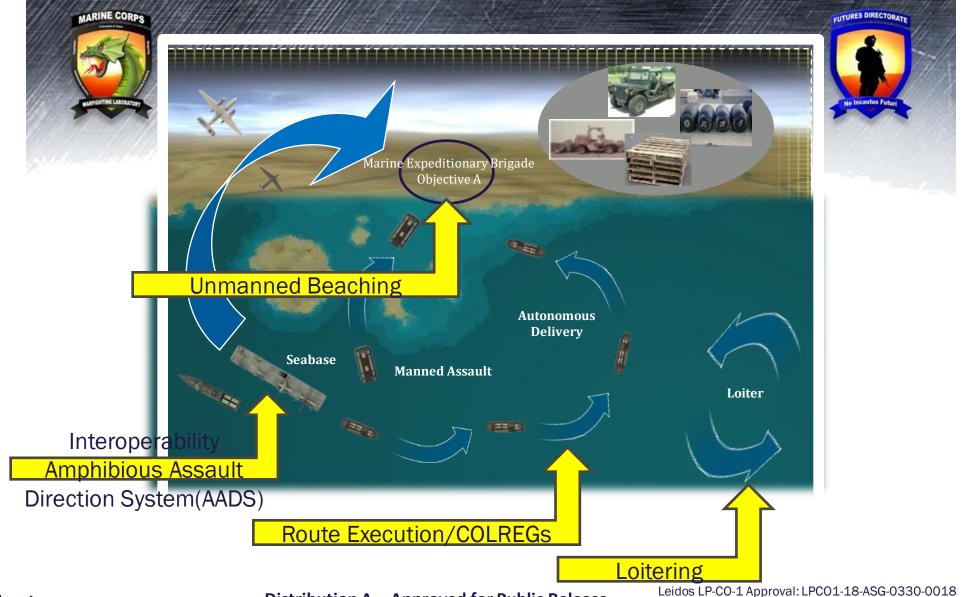
<u>Organization</u>	<u>Role</u>
SPAWAR Systems Center Pacific	Provides program test oversight, safety, environmental, and integration with Fleet operations
DARPA	Funded concept design, autonomy development, vessel fabrication, and initial testing
ONR	Funding at sea testing, enhancements, payload(s) integration, additional vessel build
Leidos, Inc.	Prime contractor for vessel design, autonomy development, and payload(s) integration
Johns Hopkins University – Applied Physics Laboratory	Technical support organization for autonomy, sensors, and COLREGS

Leidos Maritime Autonomy


• Transferable, modular, open systems architecture

- -Standardized key interfaces
- Supports timely, cost effective, and low risk transferability, capability upgrades, and integration

Distributed and hierarchical


- Supports fault tolerance
- Supports safety critical functionality
- Supports IP management for Government and Industry
- Simplifies autonomy testing, verification, and validation
- Proven testing approach

Autonomy Testing Approach

Leidos LP-LG-4 Approval: 18-EXEMP-0402-1575

Marine Corps Autonomous Littoral Connector High-Level Operational View (OV-1)

Autonomous Logistics: Autonomizing the Marine Corp Warfighting Lab (MCWL) LCM-8: Autonomous Shore Re-Supply

- Provides capability to execute autonomous shore resupply logistics
 - Unmanned ship-to-objective maneuver (STOM) connector
- **Integrated capability provides:**
 - Local tele-operation control from shore / sea base to loiter point
 - Autonomous transit to next loiter position including obstacle avoidance and COLREGS autonomy behaviors
 - Remote supervisory control over autonomous operations
 - Local tele operation control to / from shore
- **Establishes autonomous logistics** feasibility
 - Reduces cost and risk
 - Solicits warfighter feedback and input

Autonomous Logistics: Autonomizing the MCWL LCM-8

Over-the-Horizon Communications

Integrated Capability

MCWL LCM-8: ACU2-13

Autonomy Situational Awareness Sensors and Communications on mast:

- Radars
- Cameras
- Automatic Identification system (AIS)
- Global Positioning System (GPS)

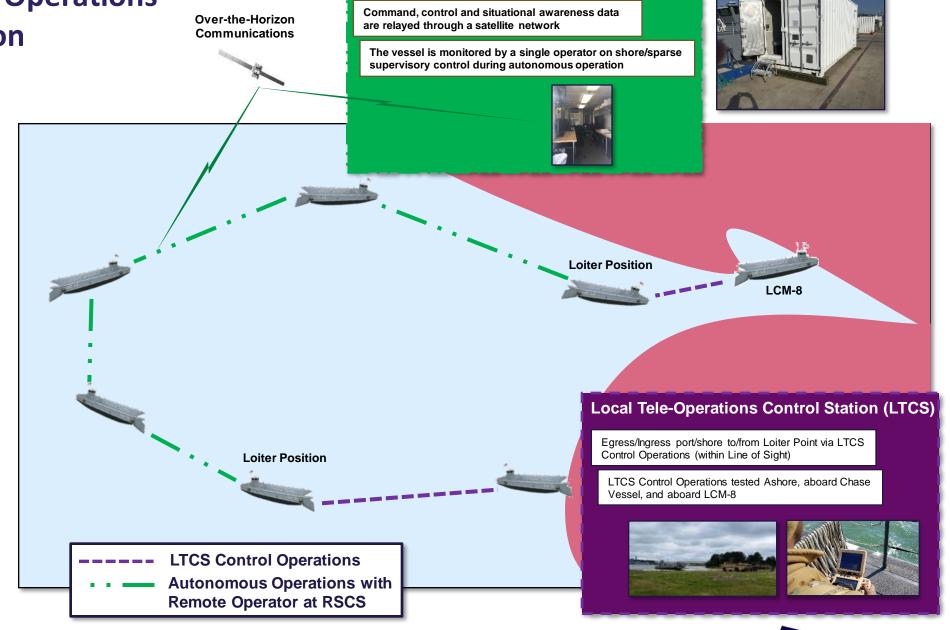
Remote Supervisory Control Station (RSCS)

Remote Operator Control Van

Distribution A – Approved for Public Release

Handheld Local Tele-Operations Control Station (LTCS): Line-of-Sight Communications

Leidos LP-LG-4 Approval: 18-EXEMP-0402-1575



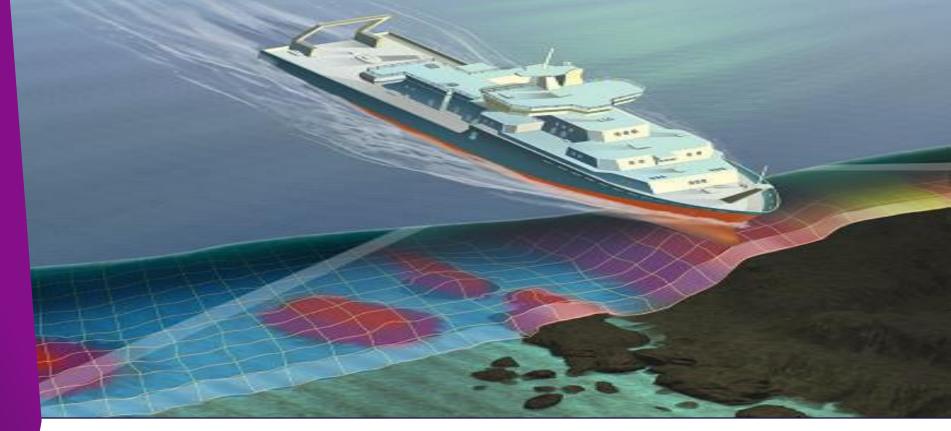
Conducted several successful demonstrations ongoing

Potential next steps:

- Autonomous beaching behaviors
- Formation behaviors
- Command, control, and communications improvements

Remote Supervisory Control Station (RSCS)

Summary


Autonomy development in many areas:

- Unmanned vessel autonomy
- Optionally manned vessel autonomy
- Autonomy for situational awareness
- Product lines: Autonomous vessels, "autonomized" manned vessels, and bridge decision aids
- Increase current mission capability and capacity at lower cost and risk, and enable new missions

The ACTUV Program and SEA HUNTER I vessel have successfully transitioned from DARPA to ONR as the MDUSV Program

- SEA HUNTER I currently undergoing testing
- Variety of missions being considered
- Under contract for a second hull SEA HUNTER II

Autonomous Survey Mission: Internal Research and Development (IRAD)

Dr. Timothy Barton
Maritime Chief Engineer

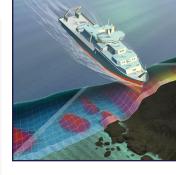
Mr. Dan Brintzinghoffer, CAPT USN (ret)
Maritime Business Development

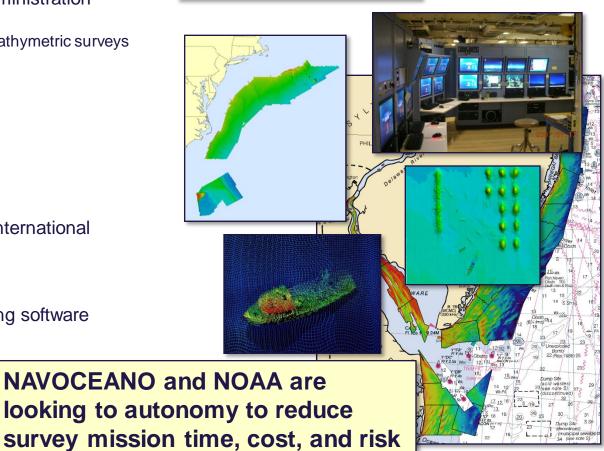
Leidos LP-LG-4 Approval: 18-LEIDOS-0402-2067

Leidos Hydrographic Survey Operations, Bathymetry Processing, and Production

Primary Customers:

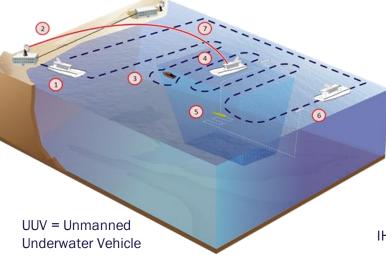
- United States (U.S.) Navy Naval Oceanographic Office (NAVOCEANO)
 - Bathymetric Data Production
- U.S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA)
 - Survey Operations and Processing: Over 95 high-resolution, shallow water bathymetric surveys spanning over 4700 square nautical miles (nm²)


Core survey capabilities:


- Hydrographic, cable route, search and locate and bathymetric surveys
- Prototype to production software development
- Hardware / software system integration

Major survey technologies:

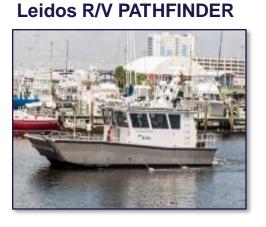
- Integrated Survey System (ISS) system used to conduct surveys to International Hydrographic Organization standards
 - NAVOCEANO ISS-60 development
 - Leidos commercial ISS-2000 development and maintenance
- Survey Analysis and Area-Based Editor (SABER) survey data processing software
- Combined Uncertainty Bathymetric Estimator (CUBE)
- Bathymetric Attributed Grid (BAG)
- Automated Contact Detection (ACD)
- International Organization for Standardization (ISO) 9001:2015 certified



Autonomous Bathymetric Survey Demonstration: 2017

- Integrated Bathymetric Survey Payload on Leidos Research Vessel (R/V) PATHFINDER
 - Multi-beam sonar
 - Moving Vessel Profiler (MVP)
 - Position and Orientation System for Maritime Vessels (POS MV)
 - − ISS-2000 − Leidos, Inc.
 - UUV and towed launch and recovery dock Leidos, Inc.
 - High Data Rate Software Defined Radio Leidos, Inc.

Autonomous Survey Mission Profile



- 1. PATHFINDER self-deploys to survey region
- 2. High bandwidth line of site communications established
- 3. PATHFINDER executes COLREGS maneuver around surface contact and resumes survey plan
- 4. PATHFINDER collects IHO Order One bathymetry and provides snippets and survey summary to a remote operator
- Autonomous UUV deployment in response to high interest target identified in survey data

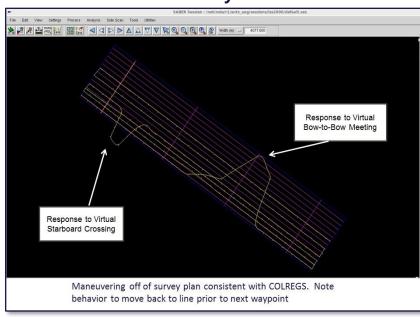
 UUV retrieved and data exfiled to
- shore site
 7.) Pathfinder returns to base

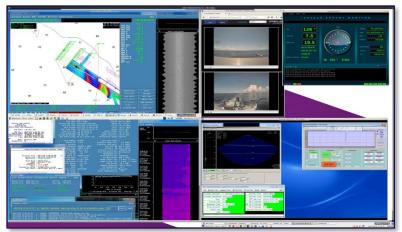
IHO = International Hydrographic Organization

Payload Integration

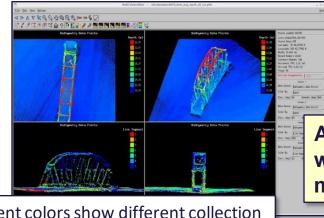
Multi-Beam Sonar and Mount

Leidos UUV and Towed Launch and Recovery Dock




Autonomous Bathymetric Survey Demonstration: 2017

- Successful autonomous bathymetric survey
 - 63 nautical miles (nm) at approximately 7.5 knots (kts)
 - No operator intervention over 3 days
- 25 COLREGs maneuvers
 - − 16 real interfering contacts
 - 9 virtual contacts
- 4 / 4 successful UUV autonomous launches and recoveries from USV
 - -1 initial recovery miss successful autonomous retry
- Successful real time data exfiltration


Planned and Actual Survey Lines - Gulf of Mexico

Remote Operator Control Display - Rhode Island

Example Survey Object of Interest – Bridge Truss

Different colors show different collection lines over the same bridge truss

Next steps:

- Autonomous "holiday" behaviors
- · Object of interest investigation
- Autonomize Hydroghraphic Survey Launch (HSL)
- Additional demonstrations

Autonomous line following performance was consistent and commensurate with manned survey missions

Leidos LP-CO-1 Approval: LPCO1-18-ASG-0330-0017
Leidos LP-LG-4 Approval: 18-LEIDOS-0402-2067